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1 INTRODUCTION

According to the United Nations, the current world

population is expected to reach 8.6 billion by 2030 and

9.8 billion in 2050 [1]. Although recent reports by the

Food and Agricultural Organization showed the food

production industry is growing by 1.2 percent every

year, it is nowhere close to meeting the food demand

that is expected to increase anywhere between 59%

to 98% by 2050 [2]. To meet this need, agricultural

producers are embracing innovative technologies to

replace the traditional method of maintaining their

crops and increasing food productivity. Traditional

methods for acquiring crop traits, such as plant height,

leaf color, chlorophyll content, biomass, and yield

includes manual sampling, which is time-consuming

and labor-intensive. As a result, Unmanned Aerial Ve-

hicles (UAVs), equipped with different sensors, have

become an important phenotyping tool in recent years.

The aerial images obtained from UAVs are regularly

used by crop researchers and agricultural producers

to not only monitor crops during the growing season

but also to make prompt and reliable judgments.

One of the many important decisions that are made

after agricultural producers use UAVs is the amount of

nitrogen fertilizers required to keep the crops healthy.

One way to determine the nitrogen prescription uses

the normalized difference red edge index (NDRE)

from aerial images. NDRE utilizes the red edge band

to detect the changes in chlorophyll content, thus

determining the health of the crop. After measuring

vegetation indices, such as NDRE, the nitrogen input

is determined using the process described by figure 1.

Fig. 1. Nitrogen prescription process. The crops’ canopy re-

flectance is measured by a vegetation index. Then, the vegetation

index is calibrated using a reference vegetation index. Next, the

required amount of nitrogen is determined and applied to the

field.

The indices calculated from aerial images are cal-

ibrated against a reference vegetation index to obtain
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the sufficiency index (SI). This index is derived us-

ing equation 1. The calculated SI is then applied to

a nitrogen prescription algorithm, which is depicted

by equation 2. This algorithm measures the amount

of nitrogen that is required for the field. Hence, an

inaccurate measurement of the NDRE will result in an

inaccurate prescription of nitrogen. The implications

of bad nitrogen prescriptions is one of the many rea-

sons the accuracy of the NDRE data from aerial images

is of utmost significance.

(1) (2)

Hence, an inaccurate measurement of the NDRE

will result in an inaccurate prescription of nitrogen.

The implications of bad nitrogen prescriptions is one

of the many reasons the accuracy of the NDRE data

from aerial images is of utmost significance.

1.1 Problem Statement

Unfortunately, the accuracy of aerial images can be af-

fected by various factors, one of which is the presence

of clouds [3]. Clouds and their accompanying shad-

ows are inevitable contaminants for aerial imagery.

According to the estimation made by the International

Satellite Cloud Climatology Project-Flux Data (ISCCP-

FD), the global annual mean cloud cover is approxi-

mately 66% [4]. Clouds impede UAV’s and satellites

from obtaining clear views of the land. Moreover,

the shadows cast by clouds eliminates crucial spectral

information for the NDRE. As NDRE is influenced

by clouds and shadows, ignorant farmers may give

more nitrogen than they would on a regular day,

resulting in wasted money and harmful effects on the

environment. On the other hand, they may prescribe

too small amounts of nitrogen, which hurt their crops

in the long run.

The following paper explored ways to detect

clouds and shadows in aerial images. Furthermore,

this paper studied effects on the NDRE measurements.

To accomplish these tasks the team used Full Veg-

etation Coverage (FVC) to estimate when the crop

reaches full canopy. The team then developed an

algorithm to detect clouds and trace them in aerial

images. Lastly the effects of clouds and shadows were

evaluated.

1.2 Potential Impact

The end goal of this study is to make input decision-

makers aware of the significance of clouds and shad-

ows in aerial images. This knowledge will enable agri-

cultural producers to prescribe nitrogen to their crops

in a more efficient and accurate manner. As a result,

farmers will save money and produce healthier crops.

Furthermore, this project may generate a discussion

of how computer vision may improve the accuracy

of nitrogen prescription recommendations delivered

to decision-makers who work with corn, maize, soy-

beans and sorghum. Cloud and shadow detection

could also be useful for solar energy production, and

environmental monitoring.

For your information, the following project was

done with accordance to the final project requirement

for CSCE 473/873: Computer Vision at the University

of Nebraska-Lincoln. The project was accomplished

during the Fall 2019 semester.

2 OBJECTIVES

To accomplish the aforementioned project, three objec-

tives were defined for this project:

1) Detect the full canopy stage: Approximate the

date at which the crop reaches full canopy.

2) Detecting clouds and tracing shadows: De-

termine the presence of clouds and shadows

over the fields in the images and trace their

outlines.

December 17, 2019 DRAFT



CSCE 873 FALL 2019 3

3) Comparing data: Determine the factor that

clouds and shadows influence vegetation in-

dices and the sufficiency index.

3 DATASET

This project’s images are part of a single dataset col-

lected for an on-farm research project, which investi-

gated site-specific nitrogen management via irrigation

systems. The images are multispectral images. They

were obtained from two different platforms - drones

and planes. The drone images were collected from

the aforementioned researchers. TerrAvion, a third

party aerial imaging company, was the paid service

provider for the plane-based aerial imagery. Figure 2

below shows the wavebands used in each dataset. The

quantitative properties of the datasets are presented in

Table 1.

Fig. 2. The left image is a visual representation of the TerrAvion

Images with 8 wavebands. On the right is a visual of drone

images with 4 wavebands.

Table 1. These estimated values about the

dataset are based on a completely square image.

Each data set is discussed further below.

3.1 Drone Images

Drone images were captured with a Sensefly eBee

SQ mounted Parrot Sequoia multispectral camera pro-

grammed to record images in the red, green, red-

edge, and near-infrared bands. The camera had an

individual image resolution of 12 cm/pixel. These

images were taken from an altitude of approximately

120 meters. Individual images were ”stitched” into a

single mosaic that depicted the entirety of the field

area using Pix4D, a privately owned and licensed soft-

ware package. Additionally, Pix4D generated GeoTiff

files that were used in this project. The GeoTiff images

have variable x and y dimensional sizes, areal extents,

and data sizes. Generally, the images covered greater

than 80 acres in area. If the typical field were com-

pletely square, x and y dimensional sizes would be

approximately 6500 pixels for a total of over 42 million

pixels per image. Stitched images for each individual

band, or derived index, have a resolution of between

12 and 15 cm/pixel at a 32-bit pixel depth. The stitched

images took up roughly 150 MB of uncompressed

memory. In the dataset, there were 74 drone images.

3.2 Plane Images

Plane images were captured with a small low-altitude

airplane mounted multispectral camera, which cap-

tured images in 8 bands including red, green, blue,

and near-infrared. Captured images encompassed the

entirety of the interest area, so they didn’t need to be

”stitched” together like the drone images. Typically,

the x and y dimensions of these images were approx-

imately 5000 pixels, resulting in a total pixel count

of 25 million. Image resolution is about 19 cm/pixel

at a 16-bit pixel depth, which occupies roughly 350

MB of storage space. Overall, there are 71 of these 8-

band images in the dataset. One of the advantages of

the TerrAvion imagery was that they presented cloud

identification labels on clouded images which could

help evaluate the algorithm’s performance.
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4 DETERMINING THE FULL CANOPY STAGE

4.1 Overview

The first objective was to determine when the corn

fields reached full canopy. In other words, when did

the corn crops cover the rows of the field. Upon

investigation of current methods, the estimation of the

full canopy can be done using two methods. These

methods are the Leaf-Area index(LAI) and the Frac-

tional Vegetation Coverage (FVC).

4.2 Related Work

First off, Leaf-Area Index (LAI) is a measure for the to-

tal area of leaves per unit ground area. LAI is directly

related to the amount of light that can be intercepted

by plants. This is a popular index for determining full

canopy stage. There are three ways to measure LAI.

First is using hand measurements. The problem with

this method is that it is invasive and can damage the

crops. The second method is performing gap fraction

analysis, using digital images that has been captured

from the ground looking up through the canopy [5].

The last method involves the estimation of LAI from

aerial imagery [6] [7]. However, since we only had

access to aerial images, not actual LAI measurements,

we were not able to implement supervised learning

methods to estimate the LAI. Regarding Fractional

Vegetation Coverage (FVC), it is the ratio of vertically

projected area of vegetation to the total surface extent.

This ratio is generally expressed in relation to a unit

area. This method is relatively much simpler to esti-

mate compared to LAI [7]. Full Vegetation Coverage

can be estimated using equation 3 where s represents

the typical NDVI for bare soil and v is the typical

NDVI for dense vegetation.

(3)

This estimation was called a linear mixture model.

It can be obtained by taking the ratio of the difference

between the measured NDVI of a field and the bare

soil over the difference of dense vegration’s NDVI

and the bare soil [8]. One concern of this estimation is

defining the NDVI for bare soil and dense vegetation

is difficult. Hence, several assumptions can be made.

NDVI for bare soil would be assumed as the minimum

NDVI for a study area over a period of time. The NDVI

of dense vegetation would be the maximum NDVI of a

study area under over a period of time. Implementing

these assumptions in equation 3 results in equation 4.

(4)

4.3 Approach

Considering the earlier discussion, the team decided

to proceed with the FVC method to estimate the full

canopy dates for the fields in the dataset. There were

six agricultural producers who used drones to capture

images of their field. The images were captured on

multiple dates between June and September of 2019.

These producers were as follows:

1) Doerr

2) Kyes

3) Stech

4) Seim

5) Uhrenholdt Home

6) Uhrenholdt East

Once FVC was estimated, a histogram was pro-

duced. Figure 3 shows the FVC histogram of the

Uhrenholdt Home grower’s field from June 17 which

was known to not have reached full canopy. Figure 4

shows the histogram of the same grower from July 29,

which had reached full canopy stage. Figure 4 shows

most of the values having a high FVC, which indicated

the full canopy.
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Fig. 3. This is the FVC histogram of a field that hasn’t reached

full canopy yet.

Fig. 4. This is the FVC histogram of a field that has reached

the full-canopy stage already. This histogram seems to skew left,

which is an indication that these plants reached later growth

stages.

After plotting the FVC histogram for each image,

the cumulative histogram of the FVC was created.

The match distance between the two cumulative his-

tograms were then calculated from adjacent dates [9].

It is worth noting that the match distance is a cross-bin

dissimilarity measure that finds the L1 (Minkowsky-

Form Distance) between two cumulative histograms.

We chose the match distance because cross-bin dis-

similarity measures don’t suffer problems bin-by-bin

dissimilarity measures encounter, such as being sen-

sitive to histogram bin size and suffering from large

frequency spikes. The cumulative histogram for the

field that is not full canopy and a full canopy field are

shown in figure 5 and 6 respectively.

Fig. 5. This is the FVC cumulative histogram of a field that hasn’t

reached the full-canopy stage.

Fig. 6. This is the FVC cumulative histogram of a field that has

reached the full-canopy stage.

The goal was to find when the match distance [10]

was low (below 15) and plateaued. Specifically, we

wanted to find when the absolute differences between

two adjacent match distance measures was less than 5.

The match distances are plotted in the following scree-

plot.
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Fig. 7. This plot shows the how match distances between adja-

cent dates for a grower change over time. The slope of the graph

is large at first, but the plot plateaus over time.

4.4 Results

Table 2 shows the results of the approach to estimate

the full canopy date for the Doerr grower. As you

can see, the match distance was relatively high at the

beginning and plateaued by July 23rd. Therefore, the

estimated full canopy date for this grower was July

23rd. At this date, the match distance was below 15

and it was close (difference of 0.4) compared to July

18th’s match distance.

Table 2: This table shows the match distances between

adjacent dates for the Doerr grower. The first column lists the

latest date. The second column displays the match distances.

The third column the change in match distance. The fourth

column shows the percentage change between match distances.

Sometimes the drone images were partly obscured.

This resulted in the match distance not converging.

For an example, consider figure 8 and 9 below. It was

found that the boundary position of the field in some

of the images were not consistent.

Fig. 8. This is an image with a usual boundary.

Fig. 9. This is an image from the same grower that shows

an obscured boundary. This obscured boundary caused match

distances to diverge.

Although the approach was found to be fruitful,

some estimated full canopy dates were not as accurate

as we had hoped. This issue made the Uhrenholdt East

prediction suspect to skepticism. This prediction and

the others are shown in table 3.
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Table 3: This table lists the estimated full

canopy date for each grower in the dataset.

The estimations were checked by one group mem-

ber who had prior knowledge of the fields’ growth

logs. They validated that these estimates were reason-

able.

4.5 Other Approaches

To evaluate the estimation of these results, the team

attempted other methods as well. For instance, we

started to perform hierarchical clustering on segments

of the field. We clustered FVC intensity subimages

using the match distance. Figure 10 shows an example

of this method where the field resulted in the clusters

shown.

Fig. 10. This example shows the hierarchical clustering assign-

ments for subsections of one field.

This method did not provide much information

and with the limited time at hand, it was not feasible to

continue developing it further. However, future work

can be done to improve it as one might wonder which

cluster marks a full canopy segment. To accomplish

this one must make an FVC or NDVI histogram of

a full canopy subimage. This histogram would be

the ground truth. Then for each drone image, the

subimages of each cluster could be compared to the

ground truth histogram. This process is considered as

supervised learning and would classify which of the

clusters marks full canopy segments.

5 DETECTING CLOUDS AND SHADOWS

5.1 Overview

The purpose of this objective was to detect the pres-

ence of clouds and shadows within images. Detecting

the presence of these objects is important for auto-

mated image processing algorithms. For researchers

that perform image processing tasks by hand, it would

be useful to have geospatial files for correcting image

values within those regions or masking those regions

out of their analysis. In order to accomplish this task,

three sub-objectives were proposed:

1) Determine whether or not clouds and/or

shadows are present

2) Delineate where the clouds and shadows are

and find their outer boundaries.

3) Generate geospatial data files (specifically

shapefiles) of cloud and shadow coverage re-

gions.

For the development of the algorithm, we used the

TerrAvion dataset because it had 12 images of accept-

able quality that were verified to have clouds and/or

shadows. The images could contain both clouds and

shadows, just clouds, or just shadows. Though the

terravion images had 8 total bands, only the first 7

were used in this algorithm because the 8th band was

an alpha layer.

5.2 Related Work

Previous studies were done on the topic of shadow

detection in aerial images. Some of the prior studies

that inspired our approach also mentioned that re-

flectance properties of clouds and shadows are the
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most distinguishable characteristics and can be used

to extract clouded and shadowed regions from images

[11,12]. Our review indicated that various approaches

were taken to accomplish this task. In [12], their basic

process was to use two images, a brightness corrected

non-shadowed image of an area and a test image.

Then, they applied a wavelet transform to both images

and a smoothing filter to the wavelet transformed

images. Next, they thresholded the test image versus

the reference image to identify areas with clouds and

shadows. This step generated a binary decision mask

of those regions. Using the binary decision mask,

they fused the brightness corrected reference image

with the test image to correct the test image in the

shadowed and clouded regions. They observed that

clouds, thick fog, and shadows could be detected well

by their algorithm while thin fog, mist, and haze were

less well detected. This is similar to what we found

with thin clouds and only partial shadows.

5.3 Approach

With regards to the approach, the main code

(TA CloudDetect.m) was written without any bor-

rowed code from available resources or references,

other than function documentation shown in matlab

help. Additional functions for geospatial operations

were borrowed from the file exchange for implemen-

tation in functions used within the algorithm. The

algorithm, as shown in figure 11, consists of four

parts of Preprocessing, Cluster Detection, Delineation,

and Generation/Evaluation. For your information, the

algorithm could be adapted to other image formats

by adjusting the preprocessing steps and some cluster

detection logic and arguments; these will be addressed

later.

Fig. 11. Workflow for the cloud/shadow detection algorithm.

The algorithm has four main sections, which are color-coated.

Several different approaches were evaluated to

find clouds within images other than cluster detection;

those will be addressed in the cluster detection section.

The algorithm was semi-automated in the sense that

except for two two user inputs for date and grower,

the algorithm operated, saved image outputs, and

generated excel spreadsheets along the way and sent

them to the appropriate folders without intervention.

5.3.1 Preprossing

This step is illustrated in figure 12.

Fig. 12. The illustration lists the names and shows examples of

the preprocessing step.

The preprocessing stage gets the imported images

into a digestible and filtered form so that only our

important regions are analyzed without extraneous

noise. In order to do so, in the first step of the

algorithm, terravion image is imported and its first

7 bands (Blue, Green, Red, Near Infrared, Green2,

Reed2 and Thermal) and stored. Then, the terravion

image was converted using the TA ImageConverter

function, which was entirely by our team. Initial im-

ages’ bands, except the thermal and the alpha bands,
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when downloaded from the internet, were indexed in

a 0 to 10,000 scale and saved as a uint16 data type.

These bands were reindexed on a 0 to 1 scale and

then multiplied by 255. They were rounded to convert

them to unsigned 8 bit integers that can be easily used

with typical functions. Thermal bands had varying

concentrated ranges within the 0 to 65,535 integer

range afforded by the uint16 data type. To convert

the thermal band, the values in the thermal band

were normalized over the range to achieve a ”thermal

index” on a 0 to 1 scale that was then multiplied by

255 and rounded to convert them to unsigned 8 bit in-

tegers. This method inherently has the issue of losing

the original thermal measurement values. However,

this conversion worked for our purposes as relative

thermal values that wouldn’t affect the comparison

of thermal values in vegetation and shadows within

images.

After the image layers had been converted, they

were clipped to the boundaries of the field using

the geospatial shapefile imported during the prepro-

cessing and the geospatial reference object produced

during the ”geotiffread” operation. After the image

layers had been clipped, they were arranged to pro-

duce an NDVI indexed image. Then, the RGB layers

were composited to make an RGB image. After this

preprocessing, the images were deemed to be ready

for cluster detection.

5.3.2 Cluster Detection

For cluster detection, there were several different po-

tential approaches. Potential approaches were: edge

detection, feature point detection, unsupervised clas-

sification, supervised learning, and deep learning.

Edge detection did not work well, regardless of the

edge detection method used. This failure is likely

because cloud boundaries often have weak edges on

the boundary of the region. Additionally, few edges

within the region of the cloud as regions are fairly

homogeneous. Even with attempted connection at-

tempts and morphological operations on the detected

edges, good boundary edges couldn’t be built. Feature

point detection wasn’t suitable due to the fact that

most feature point detection algorithms operate on

square images. Fields are rarely square in the real

world. When feature point detectors were applied to

the entirety of the square bounded image, they only

found feature points on the boundary of the image.

This is because values within the square image that

are not within the populated values of the image

mosaic are all 0. The gradient jump is huge between

0 and a value in the mosaicked image, and those

gradients exceed gradients found on the inside of the

image for feature point detection. This was deemed to

be ineffective. Supervised learning and deep learning

were both considered, but due to the small dataset

size, we decided that a machine learning approach

would be suboptimal for this project.

We finally decided on unsupervised classification.

This approach had a few benefits. It doesn’t need train-

ing. We also knew approximately how many clusters

we were looking for so we could limit the algorithm

to only looking for that many clusters. Though many

different unsupervised classification approaches exist,

we chose k-means for this implementation.

Fig. 13. This visual displays the name and example output of

the cluster detection step.

The K-means algorithm used Euclidean distance

with a cluster value of 4. This cluster value was based

on the fact that we expected to find four basic parts
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of an image, which are exterior (outside of the clipped

image mosaic populated pixels), clouds, shadows, and

vegetation. We could have used an adaptive clustering

approach and used the number of clusters for which

the minimum error observed, but for an initial pass

we decided to use a static approach. After k-means

was carried out, cluster means were computed. Next,

logic was implemented to threshold those means and

label them. The logic was based on the expectation

that clouds should demonstrate the most reflectance

of the objects in an image while shadows should have

the lowest reflectance values. Both of those regions

should have lower thermal readings than vegetation.

More than one vegetation cluster was allowed in

the k-means clustering, while there were only one

shadow, one outside, and one cloud cluster allowed.

Based on this logic, a naming matrix was generated,

which assigned names of cloud, shadow, outside, or

vegetation to each cluster. The remaining algorithm

operated off of these names to logically switch on and

off operations depending on if a shadow/cloud was

present.

5.3.3 Deliniation

The next step was to delineate cloud, shadow, and

vegetation areas and boundaries. This process is illus-

trated in figure 14.

Fig. 14. This visual displays the name and example output of

the deliniation step.

The first step was to create masks of these different

clusters by binarizing where the clustered image was

equal to the cluster value corresponding to the name

of the object. These masks inherently had some noise

left over from some inaccuracies in the clustering pro-

cess. Therefore, these masks were blurred with a large

Gaussian filter (60 by 60 with standard deviation of

60). After blurring, the mask was rebinarized such that

only filtered mask values equal to one were retained

in the final mask. This final mask was then used to

detect boundaries of the features in the mask using

the matlab function ”bwboundaries”. We imposed

the algorithm so it did not include holes within the

boundary process. Doing so would allow areas that

could have been missed by clustering to be included

in the larger bounded region anyway.

5.3.4 Generation and Evaluation

For this step, we wrote a function that drew 2D bound-

ary shapes. The function took inputs of the boundary

file, and the geospatial pixel centers (x-y dimensions)

to generate a shapefile structure output and projec-

tion output. These outputs were used in conjunction

with Matlab’s ”shapewrite” and ”fprintf” functions

to generate shapefiles and projection files. These files

were able to be opened, without projection definitions

required in arcmap, and projected onto geotiff images

and world imagery from ArcMap. The evaluation

metrics that were chosen are the following: detection

correctness, polygon overlap, centerpoint capture, and

polygon similarity. Validation polygons were drawn

by hand, using arcmap, and center points were also

chosen by hand. Polygons were rough drawings but

they covered the right general area. The evaluation

process is shown in figure 15. Each step of this process

is discussed further below.

Fig. 15. This visual displays the name and example output of
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the generation and evaluation step.

1) Detection correctness: did the algorithm cor-

rectly detect clouds and/or shadows? This

was based on a ground-truth table that was

auto loaded into Matlab at the beginning of

the algorithm.

2) Polygon overlap: this metric was a yes/no

decision of whether the generated shapefile

polygons overlapped with the hand drawn

validation polygons. Essentially, the metric

tests whether or not we got the right general

area.

3) Centerpoint capture: did the generated poly-

gons contain the centerpoints that human eyes

thought would be the most important to cap-

ture.

4) Polygon similarity [15]: how similar were the

boundaries from the algorithm and the hand-

drawn validation polygons. This metric is

shown in equation 5.

(5)

The closer the area of the union and intersection

of those polygons, the more similar polygons are.

This measure could be greatly impacted by human

error when drawing the polygons so this is the least

important measure of accuracy. Nevertheless, it is still

interesting to see exactly how close the algorithms

boundaries got to human drawings.

5.4 Results

Overall, the algorithm demonstrated excellent perfor-

mance. The outcome is shown in table 4 below.

Table 4: Evaluation metrics of the

cloud and shadow detection algorithm.

The algorithm correctly detected clouds and shad-

ows in the 12 test images 83% and 92% of the time.

When the algorithm was incorrect, only false negatives

were observed. False negatives were 17% for clouds,

8% for shadows. When the algorithm was correct,

every generated polygon file overlapped with the

human-drawn polygons. Centerpoints were captured

85% of the time and 94% of the time when detecting

shadows and clouds respectively. This means that the

vast majority of the time the algorithm got the most

important points of clouds and shadows. The gener-

ated polygons also demonstrated some similarity with

the human drawn validation polygons. The similarity

values were about 50% for both clouds and shadows.

Compared to results achieved by the k-means al-

gorithm implemented by Adeline et al., our algorithm

yielded better results for the detection of shadows.

Adeline et al. reported an average f-score of only 85.9

across different images and numbers of groups for the

k-means algorithm they implemented. Our algorithm

achieved an f-score of 95.2, which significantly outper-

forms their algorithm for the detection of shadows.
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6 COMPARE SHADOWED REGIONS TO THE

REST OF THE FIELD

6.1 Overview

The purpose of this objective was to evaluate the

impact of shadows on crop canopy measurements.

We investigated how clouds and shadows influenced

the nitrogen prescriptions that are calculated using

vegetation indices and the sufficiency index.

6.2 Related Work

Many papers evaluated the impact of shadows on

plants and how they would affect the vegetation in-

dices that are obtained from aerial imagery. The results

in [13] indicate that undetected cloud shadows can

cause reflectance measurement errors of 30-40% for

affected pixels, which strongly decrease the quality

of NDVI measurements. Their study showed that

reflectance can be used to detect and trace shadows

in images. Additionally, the reflectance changes, cre-

ated by shadows, strongly impact vegetation mea-

surements. Other studies evaluated the impact of

shadows as well. In [14], they found that histogram

thresholding in the visible and NIR spectra was the

most effective method of accounting for shadows. In

their investigation of machine learning tactics, they

investigated k-means and found that it had accuracies

of detection within the 90% range.

6.3 Approach

To accomplish this task, the means and standard de-

viation of the thermal and NDVI indices were calcu-

lated for vegetated and shadowed regions of the field,

as determined by the cluster detection algorithm. A

two sample t-test was performed to compare the two

regions. Histograms of the two indexes were plotted.

It is worth noting that NDVI was used as a proxy for

NDRE since they are similar indices and the NDVI can

only be calculated from TerrAvion imagery.

6.4 Results

Figure 16 shows the comparison of NDVI and the

themal indices in the shadowed region versus the

vegetation state.

Fig. 16. These histograms compared the NDVI and the Thermal

indexes between the shadowed and the vegetation regions.

As you can see below, the majority of the NDVI his-

togram in shadowed regions was below the histogram

of the vegetated cluster. Once again, the bulk of the

thermal index histogram in the shadowed region is

below than from the vegetated cluster. The above

results is shown in table 5 below.

Table 5: Effects of shadows on

the NDVI and thermal measurements.

The average NDVI for shadowed region was found

to be 0.3732. The vegetation cluster had an average

NDVI of 0.4105. Moreover, there was a 16 degree

difference for the thermal band between the shadow

and the vegetation means. These results confirmed

that the presence of shadows affect the measurements

of NDVI. Basic calculation showed that the obtained

difference results in a sufficiency index discrepancy

of 10%, which can lead to incorrectly prescribing 77

pounds of nitrogen fertilizer less than what is needed.
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7 CONCLUSION

Cloud cover remains a challenging problem for farm-

ers who rely on aerial imagery to maintain the health

of their crops. The presence of clouds and shadows

decreases the accuracy of vegetation indices, such

as NDRE, that are obtained from aerial images. The

farmers who use imagery these inaccuracy indices

may apply suboptimal amounts of nitrogen. In some

cases, they may apply more nitrogen than is necessary,

which results in wasting money and harming the en-

vironment. On the other hand, they may prescribe less

nitrogen, which would hurt their crops. The following

paper explored ways to detect clouds on aerial images

and how they would affect the NDRE measurements.

To accomplish these tasks the team used the method

of Full Vegetation Coverage (FVC) and estimated rea-

sonable dates when the crop reaches full canopy. Next,

the team developed an algorithm to detect clouds

and shadows then trace them in aerial images. Based

on the developed algorithm, clouds were successfully

detected 92% of the time and shadows 83% of the time.

Boundaries of shadows and clouds were found and

shapefiles generated. Lastly, the clouds had impact

on vegetation index measurements. This study may

alarm decision-makers of the effects of shadows on

aerial imagery and enable them to account for cloud

and shadow effects when prescribing nitrogen, thus

saving money and producing healthier crops.

8 FUTURE WORK

We foresee a few possible improvements. Some of

the improvements include applying hierarchical clus-

tering and supervised learning to detect when crops

have reached full canopy. Since we have acquired

histograms and can indicate when crops reach full-

canopy with growth logs, we can use supervised

learning to accomplish this task. Furthermore, we

can further adapt the TerrAvion Cloud Detect algo-

rithm (TA CloudDetect.m) for detecting shadows in

the drone images because these are also the images

that indicate the amount of nitrogen that needs to be

prescribed. Moreover, further improvements can also

be done to the CloudDetect algorithm to increase the

accuracy of the data. For instance, we could apply

fully adaptive thresholding, adaptive clustering, or

pre-cluster blurring to allow the k-means algorithms

to determine the amount of clusters that minimizes the

classification error. Lastly, we wish to analyze the im-

pact of shadows on fractional-vegetation canopy mea-

surements. Doing so can be useful since shadows can

potentially result in inaccurate FVC measurements.
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